THE OXYGEN BASICITY STRENGTHENING EFFECT IN PEROXIDES*

Josef POLA and Václav CHVALOVSKÝ

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol

Received May 2nd, 1979

The hydrogen-bonding ability of peroxides $R_3MOOM'R'_3$ having M = C, Si and Ge with phenol in CCl₄ is analyzed. The oxygen basicity of the $R_3MOOM'R'_3$ with M = C and Si is indicated to be increased over the ability of the electronic effect of R_3C - and R_3Si groups probably due to the interaction between lone electron pairs located at the oxygen atoms.

In spite of a great body of data¹⁻³ on the peroxides $R_3MOOM'R'_3$ having substituted alkyl, silyl or germyl groups (M = C, Si, Ge) attached to the oxygens, the information concerning their physical properties is scanty⁴⁻¹⁰. Besides the low stability⁴ of the bond between the oxygen atoms, these compounds appear to have almost covalent character of the O—M and the O—O bonds and show⁷⁻¹⁰ only a small variation of the O—O bond parameters with substitution at the atom M. The last fact is also consonant with the hydrogen-bonding ability of the peroxides. The studies⁸⁻¹⁰ on this property revealed the decrease of the oxygen basicity in R₃MOOM'R'₃ compounds with increasing electronwithdrawing action of R and R' substituents and the operation of the Si \pm O backbonding. However, some conclusions drawn¹⁰ appear apparently inconsistent with the results of our recent studies¹¹⁻¹⁴ on the oxygen basicity of ether-like compounds. Herein we present an analysis and new interpretation of the oxygen basicity data on peroxides different from that reported earlier¹⁰.

RESULTS AND DISCUSSION

The oxygen basicity of peroxides $R_3MOOM'R'_3$, measured⁸⁻¹⁰ as the wavenumber shift $\Delta\nu(OH)$ of phenol due to its interaction with these compounds in CCl₄, is for all (CH₃)₃COOMR₃ (M = C, Si, Ge) compounds lower than that for (CH₃)₃COOR₃ compounds (Table I). This fact together with the basicity order (CH₃)₃COOC(CH₃)₃ ~ ~ (CH₃)₃COOSi(CH₃)₃ < (CH₃)₃COOGe(C₂H₃)₃ indicates that (1) electronwithdrawing effect of (CH₃)₃MO-group is greater than that of (CH₃)₃M-group and (2) the M atom electronegativity and the O \pm Si back-bonding, known to control

^{*} Part CLXIX in the series Organosilicon Compounds; Part CLXVIII: This Journal 45, 861 (1980).

properties of $(CH_3)_3COMR_3$ systems are also in operation in the peroxides $R_3MOOM'R'_3$. The difference in the $\Delta\nu(OH)$ values between $R_3MOOM'R'_3$ and $R_3MOM'R'_3$ however declines when going from carbon to silicon compounds – it approaches zero for M and M' = Si. The strikingly comparable oxygen basicity for bis(trimethylsilyl) peroxide and hexamethyldisiloxane (taking into account some, but with regard to steric effect of *t*-butyl group in $(CH_3)_3COC(CH_3)_3$, smaller steric effect of $(CH_3)_3Si$ -group) would then indicate either some basicity lowering

TABLE I $\Delta \nu$ (OH) Data⁴ for R₃MO_nM'R'₃ Compounds

	R ₃ M	R' ₃ M'	n = 1	n == 2	<i>Δ</i> Δν(OH)	
(0	CH ₃) ₃ C	(CH ₃) ₃ C	321	206	115	
((CH3)3C	(CH ₃) ₃ Si	265	210	55	
(0	CH ₃) ₃ C CH ₂) ₂ Si	(C ₂ H ₅) ₃ Ge (CH ₂) ₃ Si	$>400^{b}$ 169	302 172	98 3	

^a Δv (OH) of phenol due to its interaction with R₃MO_nM'R'₃ in CCl₄, in cm⁻¹, taken from refs^{8-10,15-17}.^b The value 400 cm⁻¹ corresponds to Δv^{pyrrol} with (CH₃)₃GeOC₂H₅ (215 cm⁻¹, ref.¹⁸) and was obtained by the equation $\Delta v^{phenol} = 1.76 \Delta v^{pyrrol} + 21.0$ (see ref.¹⁴).

TABLE II Experimental^a and Calculated^b Δv (OH) Data for R₃MOOM'R'₃ Compounds

Compound -	exp.	calc. ^c	calc. ^d	
(CH ₃) ₃ COOC(CH ₃) ₃	206	92 ± 28	_	
(CH ₃) ₃ COOSi(CH ₃) ₃	210	117 ± 10	76 ± 27	
(CH ₃) ₃ COOSi(C ₆ H ₅) ₃	140	_	36 ± 31	
(CH ₃) ₃ SiOOSi(CH ₃) ₃	172	106 ± 10	_	
(CH ₃) ₃ SiOOSi(C ₆ H ₅) ₃	153		76 ± 12	
$(CH_3)_3COOGe(C_2H_5)_3$	302	-	271 ± 7	

^{*a*} Refs⁸⁻¹⁰, ^{*b*} Calculated from the developed $\sigma_{R_3MO}^*$ parameters and the known^{11,21} $\Delta\nu$ (OH) vs σ_X^* relationship for the X—OM(CH₃)₃ (M = C and Si) compounds. ^{*c*} Acquired from the σ^* of the left-sided R₃MO group. ^{*d*} Acquired from the σ^* of the right-sided R₃MO group.

interaction in hexamethyldisiloxane, or some basicity strengthening effect in bis(trimethylsilyl)peroxide. The following analysis of the oxygen basicity in peroxides was made in order to answer this question.

The electronic effect parameter of R_3MO -groups $(R_3MO, \sigma^*: (CH_3)_3CO, 1.56; (CH_3)_3SiO, 1.68; (C_6H_5)_3SiO, 1.99; (C_2H_5)_3GeO, 0.15) was obtained from that of <math>R_3M$ -groups^{14,19} ((CH_3)_3C, $\sigma^* = -0.30$; (CH_3)_3Si, $\sigma^* = -0.15$; (C₆H₅)_3Si, $\sigma^* = 0.45$; (C₂H₅)_3Ge, $\sigma^* = -1.50^*$) attached to oxygen on the basis of the interrelation²⁰ between σ_{RO}^* and σ_{RC}^* . Thereafter, the oxygen basicity of R_3MO — —OC(CH₃)₃ and R_3MO —OSi(CH₃)₃ was calculated from the known^{11,21} $\Delta \nu$ (OH) vs σ_{R}^* relationship for the X—OC(CH₃)₃ and X—OSi(CH₃)₃ sets on the basis of the parameter σ_{RMO}^* .

The results gathered in Table II invalidate the operation of an intramolecular coordination bond in peroxides (structure I) suggested earlier¹⁰ and indicate that the calculated oxygen basicity in the peroxide with GeOOC grouping

$$R_3Si \leftarrow OMR'_3$$

 O
 I

matches well with the experimental value. Those $\Delta v(OH)$ values calculated for the peroxides with COOC, COOSi, and SiOOSi groupings are much greater than their experimental counterparts. It thus turns out that some oxygen 'basicity strengthening effect has to be operative in peroxides $R_3MOOM'R'_3$ with M = C and Si. It obviously originates from the interaction between lone pairs of electrons localized at the oxygen that, by increasing the HOMO energy, makes the peroxide more apt to interact with soft acid by which the dissociating phenol obviously is.

REFERENCES

- 1. Tobolsky A. V., Mesrobian R. B.: Organic Peroxides. Interscience, New York 1954.
- 2. Sosnovsky G., Brown J. H.: Chem. Rev. 66, 529 (1966).
- 3. Brilkina T. G., Shushunov V. A.: Usp. Khim. 35, 1430 (1966).
- 4. Zaikin I. D., Van-Chin-Syan Y. A., Chuchmarev S. K.: Zh. Fiz. Khim. 49, 3069 (1975).
- 5. Vyshinskii N. N., Morozov O. S., Rudnavskii N. K.: Tr. Khim. Khim. Tekhnol. 1974, 116.
- 6. Batich C., Adam W.: Tetrahedron Lett. 1974, 1467.
- Litinskii A. O., Shreibert A. I., Baliavincis L. M. Z., Bolotin A. B.; Teor. Eksp. Khim. 7, 825 (1971).
- Skobeleva S. E., Vyazankin N. S., Khorshev S. Y., Egorochkin A. N., Yablokov V. A., Tarabarina A. P., Sunin A. N., Yablokova N. V.: Zh. Obshch. Khim. 43, 1514 (1973).

^{*} Assumed identical with σ^* for $(n-C_3H_7)_3$ Ge that was obtained from $\Delta \nu$ pyrrol for $(n-C_3H_7)_3$ GeOC₂H₅ (226 cm⁻¹, ref.¹⁸) and using the equation interrelating $\Delta \nu^{\text{phenol}}$ with $\Delta \nu^{\text{pyrrol}}$ (ref.¹⁴), and the relationship $\Delta \nu^{\text{phenol}} vs \sigma_X^*$ for X—OC₂H₅ (ref.¹¹).

Organosilicon Compounds

- Khorshev S. Y., Skobeleva S. E., Egorochkin A. N., Sluchevskaya N. P., Yablokova N. V., Yablokov V. A.: Zh. Obshch. Khim. 47, 1357 (1977).
- Khorshev S. Y., Egorochkin A. N., Skobeleva S. E., Sluchevskaya N. P., Ganzushkin A. V., Yablokov V. A.: Zh. Obshch. Khim. 48, 1353 (1978).
- 11. Pola J., Chvalovský V.: This Journal 43, 746 (1978).
- 12. Pola J., Jakoubková M., Chvalovský V.: This Journa¹ 43, 753 (1978).
- 13. Pola J., Jakoubková M., Chvalovský V.: This Journal 43, 760 (1978).
- 14. Pola J., Chvalovský V.: This Journal 45, 861 (1980).
- Trofimov B. A., Shergina N. I., Korostova S. E., Kositsyna E. I., Vyletzhanin O. N., Nedolya N. A., Voronkov M. G.: Org. Reactiv. 8, 1047 (1971).
- 16. Pola J., Papoušková Z., Chvalovský V.: This Journal 41, 239 (1976).
- 17. West R., Whatley L. S., Lake K. J.: J. Amer. Chem. Soc. 83, 761 (1961).
- 18. Ulbricht K., Jakoubková M., Chvalovský V.: This Journal 33, 1693 (1968).
- Taft R. W.: in the book: Steric Effects in Organic Chemistry (S. Newman, Ed.), Chap. 13. Wiley, New York 1955.
- 20. Belskii V. E.: Zh. Obshch. Khim. 40, 1374 (1970).
- 21. Pola J., Chvalovský V.: This Journal 43, 3380 (1978).

Translated by the author (J. P.).